ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00383
22
18

ReLER@ZJU-Alibaba Submission to the Ego4D Natural Language Queries Challenge 2022

1 July 2022
Na Liu
Xiaohan Wang
Xiaobo Li
Yi Yang
Yueting Zhuang
ArXivPDFHTML
Abstract

In this report, we present the ReLER@ZJU-Alibaba submission to the Ego4D Natural Language Queries (NLQ) Challenge in CVPR 2022. Given a video clip and a text query, the goal of this challenge is to locate a temporal moment of the video clip where the answer to the query can be obtained. To tackle this task, we propose a multi-scale cross-modal transformer and a video frame-level contrastive loss to fully uncover the correlation between language queries and video clips. Besides, we propose two data augmentation strategies to increase the diversity of training samples. The experimental results demonstrate the effectiveness of our method. The final submission ranked first on the leaderboard.

View on arXiv
Comments on this paper