ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00756
16
2

Learning Noise-independent Speech Representation for High-quality Voice Conversion for Noisy Target Speakers

2 July 2022
Liumeng Xue
Shan Yang
Na Hu
Dan Su
Linfu Xie
ArXivPDFHTML
Abstract

Building a voice conversion system for noisy target speakers, such as users providing noisy samples or Internet found data, is a challenging task since the use of contaminated speech in model training will apparently degrade the conversion performance. In this paper, we leverage the advances of our recently proposed Glow-WaveGAN and propose a noise-independent speech representation learning approach for high-quality voice conversion for noisy target speakers. Specifically, we learn a latent feature space where we ensure that the target distribution modeled by the conversion model is exactly from the modeled distribution of the waveform generator. With this premise, we further manage to make the latent feature to be noise-invariant. Specifically, we introduce a noise-controllable WaveGAN, which directly learns the noise-independent acoustic representation from waveform by the encoder and conducts noise control in the hidden space through a FiLM module in the decoder. As for the conversion model, importantly, we use a flow-based model to learn the distribution of noise-independent but speaker-related latent features from phoneme posteriorgrams. Experimental results demonstrate that the proposed model achieves high speech quality and speaker similarity in the voice conversion for noisy target speakers.

View on arXiv
Comments on this paper