ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.01520
15
2

Adaptive GLCM sampling for transformer-based COVID-19 detection on CT

4 July 2022
Ok-Cheol Jung
Dong un Kang
Gwanghyun Kim
S. Chun
    MedIm
ArXivPDFHTML
Abstract

The world has suffered from COVID-19 (SARS-CoV-2) for the last two years, causing much damage and change in people's daily lives. Thus, automated detection of COVID-19 utilizing deep learning on chest computed tomography (CT) scans became promising, which helps correct diagnosis efficiently. Recently, transformer-based COVID-19 detection method on CT is proposed to utilize 3D information in CT volume. However, its sampling method for selecting slices is not optimal. To leverage rich 3D information in CT volume, we propose a transformer-based COVID-19 detection using a novel data curation and adaptive sampling method using gray level co-occurrence matrices (GLCM). To train the model which consists of CNN layer, followed by transformer architecture, we first executed data curation based on lung segmentation and utilized the entropy of GLCM value of every slice in CT volumes to select important slices for the prediction. The experimental results show that the proposed method improve the detection performance with large margin without much difficult modification to the model.

View on arXiv
Comments on this paper