ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.01911
22
22

Explainability in Deep Reinforcement Learning, a Review into Current Methods and Applications

5 July 2022
Tom Hickling
Abdelhafid Zenati
Nabil Aouf
P. Spencer
    XAI
    AI4TS
ArXivPDFHTML
Abstract

The use of Deep Reinforcement Learning (DRL) schemes has increased dramatically since their first introduction in 2015. Though uses in many different applications are being found, they still have a problem with the lack of interpretability. This has bread a lack of understanding and trust in the use of DRL solutions from researchers and the general public. To solve this problem, the field of Explainable Artificial Intelligence (XAI) has emerged. This entails a variety of different methods that look to open the DRL black boxes, ranging from the use of interpretable symbolic Decision Trees (DT) to numerical methods like Shapley Values. This review looks at which methods are being used and for which applications. This is done to identify which models are the best suited to each application or if a method is being underutilised.

View on arXiv
Comments on this paper