ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.02066
6
4

Test-time Adaptation for Real Image Denoising via Meta-transfer Learning

5 July 2022
Agus Gunawan
Muhammad Adi Nugroho
Se Jin Park
    OOD
ArXivPDFHTML
Abstract

In recent years, a ton of research has been conducted on real image denoising tasks. However, the efforts are more focused on improving real image denoising through creating a better network architecture. We explore a different direction where we propose to improve real image denoising performance through a better learning strategy that can enable test-time adaptation on the multi-task network. The learning strategy is two stages where the first stage pre-train the network using meta-auxiliary learning to get better meta-initialization. Meanwhile, we use meta-learning for fine-tuning (meta-transfer learning) the network as the second stage of our training to enable test-time adaptation on real noisy images. To exploit a better learning strategy, we also propose a network architecture with self-supervised masked reconstruction loss. Experiments on a real noisy dataset show the contribution of the proposed method and show that the proposed method can outperform other SOTA methods.

View on arXiv
Comments on this paper