ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.02674
50
120

Perceptual Quality Assessment of Omnidirectional Images

6 July 2022
Huiyu Duan
Guangtao Zhai
Xiongkuo Min
Yucheng Zhu
Yi Fang
Xiaokang Yang
ArXivPDFHTML
Abstract

Omnidirectional images and videos can provide immersive experience of real-world scenes in Virtual Reality (VR) environment. We present a perceptual omnidirectional image quality assessment (IQA) study in this paper since it is extremely important to provide a good quality of experience under the VR environment. We first establish an omnidirectional IQA (OIQA) database, which includes 16 source images and 320 distorted images degraded by 4 commonly encountered distortion types, namely JPEG compression, JPEG2000 compression, Gaussian blur and Gaussian noise. Then a subjective quality evaluation study is conducted on the OIQA database in the VR environment. Considering that humans can only see a part of the scene at one movement in the VR environment, visual attention becomes extremely important. Thus we also track head and eye movement data during the quality rating experiments. The original and distorted omnidirectional images, subjective quality ratings, and the head and eye movement data together constitute the OIQA database. State-of-the-art full-reference (FR) IQA measures are tested on the OIQA database, and some new observations different from traditional IQA are made.

View on arXiv
Comments on this paper