ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.02832
27
52

Distributional neural networks for electricity price forecasting

6 July 2022
Grzegorz Marcjasz
Michał Narajewski
R. Weron
F. Ziel
ArXivPDFHTML
Abstract

We present a novel approach to probabilistic electricity price forecasting which utilizes distributional neural networks. The model structure is based on a deep neural network that contains a so-called probability layer. The network's output is a parametric distribution with 2 (normal) or 4 (Johnson's SU) parameters. In a forecasting study involving day-ahead electricity prices in the German market, our approach significantly outperforms state-of-the-art benchmarks, including LASSO-estimated regressions and deep neural networks combined with Quantile Regression Averaging. The obtained results not only emphasize the importance of higher moments when modeling volatile electricity prices, but also -- given that probabilistic forecasting is the essence of risk management -- provide important implications for managing portfolios in the power sector.

View on arXiv
Comments on this paper