ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03804
24
0

On the Subspace Structure of Gradient-Based Meta-Learning

8 July 2022
Gustaf Tegnér
Alfredo Reichlin
Hang Yin
Mårten Björkman
Danica Kragic
ArXivPDFHTML
Abstract

In this work we provide an analysis of the distribution of the post-adaptation parameters of Gradient-Based Meta-Learning (GBML) methods. Previous work has noticed how, for the case of image-classification, this adaptation only takes place on the last layers of the network. We propose the more general notion that parameters are updated over a low-dimensional \emph{subspace} of the same dimensionality as the task-space and show that this holds for regression as well. Furthermore, the induced subspace structure provides a method to estimate the intrinsic dimension of the space of tasks of common few-shot learning datasets.

View on arXiv
Comments on this paper