ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.05271
24
2

Online Game Level Generation from Music

12 July 2022
Ziqi Wang
Jialin Liu
ArXivPDFHTML
Abstract

Game consists of multiple types of content, while the harmony of different content types play an essential role in game design. However, most works on procedural content generation consider only one type of content at a time. In this paper, we propose and formulate online level generation from music, in a way of matching a level feature to a music feature in real-time, while adapting to players' play speed. A generic framework named online player-adaptive procedural content generation via reinforcement learning, OPARL for short, is built upon the experience-driven reinforcement learning and controllable reinforcement learning, to enable online level generation from music. Furthermore, a novel control policy based on local search and k-nearest neighbours is proposed and integrated into OPARL to control the level generator considering the play data collected online. Results of simulation-based experiments show that our implementation of OPARL is competent to generate playable levels with difficulty degree matched to the ``energy'' dynamic of music for different artificial players in an online fashion.

View on arXiv
Comments on this paper