ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06240
11
0

Physics Informed Symbolic Networks

11 July 2022
Ritam Majumdar
Vishal Sudam Jadhav
A. Deodhar
Shirish S. Karande
L. Vig
Venkataramana Runkana
    PINN
ArXivPDFHTML
Abstract

We introduce Physics Informed Symbolic Networks (PISN) which utilize physics-informed loss to obtain a symbolic solution for a system of Partial Differential Equations (PDE). Given a context-free grammar to describe the language of symbolic expressions, we propose to use weighted sum as continuous approximation for selection of a production rule. We use this approximation to define multilayer symbolic networks. We consider Kovasznay flow (Navier-Stokes) and two-dimensional viscous Burger's equations to illustrate that PISN are able to provide a performance comparable to PINNs across various start-of-the-art advances: multiple outputs and governing equations, domain-decomposition, hypernetworks. Furthermore, we propose Physics-informed Neurosymbolic Networks (PINSN) which employ a multilayer perceptron (MLP) operator to model the residue of symbolic networks. PINSNs are observed to give 2-3 orders of performance gain over standard PINN.

View on arXiv
Comments on this paper