ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06271
11
5

Secure Linear MDS Coded Matrix Inversion

13 July 2022
Neophytos Charalambides
Mert Pilanci
Alfred Hero
ArXivPDFHTML
Abstract

A cumbersome operation in many scientific fields, is inverting large full-rank matrices. In this paper, we propose a coded computing approach for recovering matrix inverse approximations. We first present an approximate matrix inversion algorithm which does not require a matrix factorization, but uses a black-box least squares optimization solver as a subroutine, to give an estimate of the inverse of a real full-rank matrix. We then present a distributed framework for which our algorithm can be implemented, and show how we can leverage sparsest-balanced MDS generator matrices to devise matrix inversion coded computing schemes. We focus on balanced Reed-Solomon codes, which are optimal in terms of computational load; and communication from the workers to the master server. We also discuss how our algorithms can be used to compute the pseudoinverse of a full-rank matrix, and how the communication is secured from eavesdroppers.

View on arXiv
Comments on this paper