ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06325
11
3

Non-Myopic Multifidelity Bayesian Optimization

13 July 2022
Francesco Di Fiore
L. Mainini
ArXivPDFHTML
Abstract

Bayesian optimization is a popular framework for the optimization of black box functions. Multifidelity methods allows to accelerate Bayesian optimization by exploiting low-fidelity representations of expensive objective functions. Popular multifidelity Bayesian strategies rely on sampling policies that account for the immediate reward obtained evaluating the objective function at a specific input, precluding greater informative gains that might be obtained looking ahead more steps. This paper proposes a non-myopic multifidelity Bayesian framework to grasp the long-term reward from future steps of the optimization. Our computational strategy comes with a two-step lookahead multifidelity acquisition function that maximizes the cumulative reward obtained measuring the improvement in the solution over two steps ahead. We demonstrate that the proposed algorithm outperforms a standard multifidelity Bayesian framework on popular benchmark optimization problems.

View on arXiv
Comments on this paper