ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06955
14
44

Learning Implicit Templates for Point-Based Clothed Human Modeling

14 July 2022
Siyou Lin
Hongwen Zhang
Zerong Zheng
Ruizhi Shao
Yebin Liu
    3DH
ArXivPDFHTML
Abstract

We present FITE, a First-Implicit-Then-Explicit framework for modeling human avatars in clothing. Our framework first learns implicit surface templates representing the coarse clothing topology, and then employs the templates to guide the generation of point sets which further capture pose-dependent clothing deformations such as wrinkles. Our pipeline incorporates the merits of both implicit and explicit representations, namely, the ability to handle varying topology and the ability to efficiently capture fine details. We also propose diffused skinning to facilitate template training especially for loose clothing, and projection-based pose-encoding to extract pose information from mesh templates without predefined UV map or connectivity. Our code is publicly available at https://github.com/jsnln/fite.

View on arXiv
Comments on this paper