ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08064
9
22

Detecting Humans in RGB-D Data with CNNs

17 July 2022
Kaiyang Zhou
A. Paiement
Majid Mirmehdi
    3DH
ArXivPDFHTML
Abstract

We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the characteristics of depth images. We also present a new depth-encoding scheme, which not only encodes depth images into three channels but also enhances the information for classification. We conduct experiments on a publicly available RGB-D people dataset and show that our approach outperforms the baseline models that only use RGB data.

View on arXiv
Comments on this paper