ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08937
38
20
v1v2v3v4 (latest)

A Community-Aware Framework for Social Influence Maximization

18 July 2022
A. Umrawal
Christopher J. Quinn
Vaneet Aggarwal
ArXiv (abs)PDFHTML
Abstract

We consider the problem of Influence Maximization (IM), the task of selecting kkk seed nodes in a social network such that the expected number of nodes influenced is maximized. We propose a community-aware divide-and-conquer framework that involves (i) learning the inherent community structure of the social network, (ii) generating candidate solutions by solving the influence maximization problem for each community, and (iii) selecting the final set of seed nodes using a novel progressive budgeting scheme. Our experiments on real-world social networks show that the proposed framework outperforms the standard methods in terms of run-time and the heuristic methods in terms of influence. We also study the effect of the community structure on the performance of the proposed framework. Our experiments show that the community structures with higher modularity lead the proposed framework to perform better in terms of run-time and influence.

View on arXiv
Comments on this paper