ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09012
14
4

SS-MFAR : Semi-supervised Multi-task Facial Affect Recognition

19 July 2022
Darshan Gera
Badveeti Naveen
Bobbili Veerendra
Dr. S Balasubramanian
    CVBM
ArXivPDFHTML
Abstract

Automatic affect recognition has applications in many areas such as education, gaming, software development, automotives, medical care, etc. but it is non trivial task to achieve appreciable performance on in-the-wild data sets. In-the-wild data sets though represent real-world scenarios better than synthetic data sets, the former ones suffer from the problem of incomplete labels. Inspired by semi-supervised learning, in this paper, we introduce our submission to the Multi-Task-Learning Challenge at the 4th Affective Behavior Analysis in-the-wild (ABAW) 2022 Competition. The three tasks that are considered in this challenge are valence-arousal(VA) estimation, classification of expressions into 6 basic (anger, disgust, fear, happiness, sadness, surprise), neutral, and the óther' category and 12 action units(AU) numbered AU-{1,2,4,6,7,10,12,15,23,24,25,26}. Our method Semi-supervised Multi-task Facial Affect Recognition titled SS-MFAR uses a deep residual network with task specific classifiers for each of the tasks along with adaptive thresholds for each expression class and semi-supervised learning for the incomplete labels. Source code is available at https://github.com/1980x/ABAW2022DMACS.

View on arXiv
Comments on this paper