ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.10751
10
9

Federated Learning on Adaptively Weighted Nodes by Bilevel Optimization

21 July 2022
Yan Huang
Qihang Lin
N. Street
Stephen Seung-Yeob Baek
    FedML
ArXivPDFHTML
Abstract

We propose a federated learning method with weighted nodes in which the weights can be modified to optimize the model's performance on a separate validation set. The problem is formulated as a bilevel optimization where the inner problem is a federated learning problem with weighted nodes and the outer problem focuses on optimizing the weights based on the validation performance of the model returned from the inner problem. A communication-efficient federated optimization algorithm is designed to solve this bilevel optimization problem. Under an error-bound assumption, we analyze the generalization performance of the output model and identify scenarios when our method is in theory superior to training a model only locally and to federated learning with static and evenly distributed weights.

View on arXiv
Comments on this paper