ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.10785
15
29

Inductive and Transductive Few-Shot Video Classification via Appearance and Temporal Alignments

21 July 2022
Khoi Duc Minh Nguyen
Quoc-Huy Tran
Khoi Nguyen
Binh-Son Hua
Rang Nguyen
ArXivPDFHTML
Abstract

We present a novel method for few-shot video classification, which performs appearance and temporal alignments. In particular, given a pair of query and support videos, we conduct appearance alignment via frame-level feature matching to achieve the appearance similarity score between the videos, while utilizing temporal order-preserving priors for obtaining the temporal similarity score between the videos. Moreover, we introduce a few-shot video classification framework that leverages the above appearance and temporal similarity scores across multiple steps, namely prototype-based training and testing as well as inductive and transductive prototype refinement. To the best of our knowledge, our work is the first to explore transductive few-shot video classification. Extensive experiments on both Kinetics and Something-Something V2 datasets show that both appearance and temporal alignments are crucial for datasets with temporal order sensitivity such as Something-Something V2. Our approach achieves similar or better results than previous methods on both datasets. Our code is available at https://github.com/VinAIResearch/fsvc-ata.

View on arXiv
Comments on this paper