ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11719
45
29

Gradient-based Bi-level Optimization for Deep Learning: A Survey

24 July 2022
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
ArXivPDFHTML
Abstract

Bi-level optimization, especially the gradient-based category, has been widely used in the deep learning community including hyperparameter optimization and meta-knowledge extraction. Bi-level optimization embeds one problem within another and the gradient-based category solves the outer-level task by computing the hypergradient, which is much more efficient than classical methods such as the evolutionary algorithm. In this survey, we first give a formal definition of the gradient-based bi-level optimization. Next, we delineate criteria to determine if a research problem is apt for bi-level optimization and provide a practical guide on structuring such problems into a bi-level optimization framework, a feature particularly beneficial for those new to this domain. More specifically, there are two formulations: the single-task formulation to optimize hyperparameters such as regularization parameters and the distilled data, and the multi-task formulation to extract meta-knowledge such as the model initialization. With a bi-level formulation, we then discuss four bi-level optimization solvers to update the outer variable including explicit gradient update, proxy update, implicit function update, and closed-form update. Finally, we wrap up the survey by highlighting two prospective future directions: (1) Effective Data Optimization for Science examined through the lens of task formulation. (2) Accurate Explicit Proxy Update analyzed from an optimization standpoint.

View on arXiv
Comments on this paper