ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11917
43
1

Boolean and Fp\mathbb{F}_pFp​-Matrix Factorization: From Theory to Practice

25 July 2022
F. Fomin
Fahad Panolan
Anurag Patil
Adil Tanveer
ArXiv (abs)PDFHTML
Abstract

Boolean Matrix Factorization (BMF) aims to find an approximation of a given binary matrix as the Boolean product of two low-rank binary matrices. Binary data is ubiquitous in many fields, and representing data by binary matrices is common in medicine, natural language processing, bioinformatics, computer graphics, among many others. Unfortunately, BMF is computationally hard and heuristic algorithms are used to compute Boolean factorizations. Very recently, the theoretical breakthrough was obtained independently by two research groups. Ban et al. (SODA 2019) and Fomin et al. (Trans. Algorithms 2020) show that BMF admits an efficient polynomial-time approximation scheme (EPTAS). However, despite the theoretical importance, the high double-exponential dependence of the running times from the rank makes these algorithms unimplementable in practice. The primary research question motivating our work is whether the theoretical advances on BMF could lead to practical algorithms. The main conceptional contribution of our work is the following. While EPTAS for BMF is a purely theoretical advance, the general approach behind these algorithms could serve as the basis in designing better heuristics. We also use this strategy to develop new algorithms for related Fp\mathbb{F}_pFp​-Matrix Factorization. Here, given a matrix AAA over a finite field GF(ppp) where ppp is a prime, and an integer rrr, our objective is to find a matrix BBB over the same field with GF(ppp)-rank at most rrr minimizing some norm of A−BA-BA−B. Our empirical research on synthetic and real-world data demonstrates the advantage of the new algorithms over previous works on BMF and Fp\mathbb{F}_pFp​-Matrix Factorization.

View on arXiv
Comments on this paper