ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11942
21
4

Scalable Fiducial Tag Localization on a 3D Prior Map via Graph-Theoretic Global Tag-Map Registration

25 July 2022
Kenji Koide
Shuji Oishi
Masashi Yokozuka
A. Banno
ArXivPDFHTML
Abstract

This paper presents an accurate and scalable method for fiducial tag localization on a 3D prior environmental map. The proposed method comprises three steps: 1) visual odometry-based landmark SLAM for estimating the relative poses between fiducial tags, 2) geometrical matching-based global tag-map registration via maximum clique finding, and 3) tag pose refinement based on direct camera-map alignment with normalized information distance. Through simulation-based evaluations, the proposed method achieved a 98 \% global tag-map registration success rate and an average tag pose estimation accuracy of a few centimeters. Experimental results in a real environment demonstrated that it enables to localize over 110 fiducial tags placed in an environment in 25 minutes for data recording and post-processing.

View on arXiv
Comments on this paper