ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.13594
11
8

Exact spectral norm error of sample covariance

27 July 2022
Q. Han
ArXivPDFHTML
Abstract

Let X1,…,XnX_1,\ldots,X_nX1​,…,Xn​ be i.i.d. centered Gaussian vectors in Rp\mathbb{R}^pRp with covariance Σ\SigmaΣ, and let Σ^≡n−1∑i=1nXiXi⊤\hat{\Sigma}\equiv n^{-1}\sum_{i=1}^n X_iX_i^\topΣ^≡n−1∑i=1n​Xi​Xi⊤​ be the sample covariance. A central object of interest in the non-asymptotic theory of sample covariance is the spectral norm error ∣∣Σ^−Σ∣∣||\hat{\Sigma}-\Sigma||∣∣Σ^−Σ∣∣ of the sample covariance Σ^\hat{\Sigma}Σ^. In the path-breaking work of Koltchinskii and Lounici [KL17a], the `zeroth-order' magnitude of ∣∣Σ^−Σ∣∣||\hat{\Sigma}-\Sigma||∣∣Σ^−Σ∣∣ is characterized by the dimension-free two-sided estimate E{∣∣Σ^−Σ∣∣/∣∣Σ∣∣}≍r(Σ)/n+r(Σ)/n\mathbb{E} \{||\hat{\Sigma}-\Sigma||/||\Sigma||\}\asymp \sqrt{r(\Sigma)/n}+r(\Sigma)/n E{∣∣Σ^−Σ∣∣/∣∣Σ∣∣}≍r(Σ)/n​+r(Σ)/n, using the so-called effective rank r(Σ)≡tr(Σ)/∣∣Σ∣∣r(\Sigma)\equiv \mathrm{tr}(\Sigma)/||\Sigma||r(Σ)≡tr(Σ)/∣∣Σ∣∣. The goal of this paper is to provide a dimension-free first-order characterization for ∣∣Σ^−Σ∣∣||\hat{\Sigma}-\Sigma||∣∣Σ^−Σ∣∣. We show that \begin{equation*} \bigg|\frac{\mathbb{E} \{||\hat{\Sigma}-\Sigma||/||\Sigma||\} }{\mathbb{E}\sup_{\alpha \in [0,1]}\{(\alpha+n^{-1/2}\mathscr{G}_{\Sigma}(h;\alpha))^2-\alpha^2\}}- 1\bigg| \leq \frac{C}{\sqrt{r(\Sigma)} }, \end{equation*} where {GΣ(h;α):α∈[0,1]}\{\mathscr{G}_{\Sigma}(h;\alpha): \alpha \in [0,1]\}{GΣ​(h;α):α∈[0,1]} are (stochastic) Gaussian widths over spherical slices of the (standardized) Σ\SigmaΣ-ellipsoid, playing the role of a first-order analogue to the zeroth-order characteristic r(Σ)r(\Sigma)r(Σ). As an immediate application of the first-order characterization, we obtain a version of the Koltchinskii-Lounici bound with optimal constants. In the more special context of spiked covariance models, our first-order characterization reveals a new phase transition of ∣∣Σ^−Σ∣∣||\hat{\Sigma}-\Sigma||∣∣Σ^−Σ∣∣ that exhibits qualitatively different behavior compared to the BBP phase transitional behavior of ∣∣Σ^∣∣||\hat{\Sigma}||∣∣Σ^∣∣. A similar phase transition is also proved for the associated eigenvector.

View on arXiv
Comments on this paper