ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.14513
281
13
v1v2v3 (latest)

Uncertainty-Driven Action Quality Assessment

29 July 2022
Caixia Zhou
Yaping Huang
ArXiv (abs)PDFHTML
Abstract

Automatic action quality assessment (AQA) has attracted increasing attention due to its wide applications. However, most existing AQA methods employ deterministic models to predict the final score for each action, while overlooking the subjectivity and diversity among expert judges during the scoring process. In this paper, we propose a novel probabilistic model, named Uncertainty-Driven AQA (UD-AQA), to utilize and capture the diversity among multiple judge scores. Specifically, we design a Conditional Variational Auto-Encoder (CVAE)-based module to encode the uncertainty in expert assessment, where multiple judge scores can be produced by sampling latent features from the learned latent space multiple times. To further utilize the uncertainty, we generate the estimation of uncertainty for each prediction, which is employed to re-weight AQA regression loss, effectively reducing the influence of uncertain samples during training. Moreover, we further design an uncertainty-guided training strategy to dynamically adjust the learning order of the samples from low uncertainty to high uncertainty. The experiments show that our proposed method achieves competitive results on three benchmarks including the Olympic events MTL-AQA and FineDiving, and the surgical skill JIGSAWS datasets.

View on arXiv
Comments on this paper