21
8

Streaming Algorithms for Diversity Maximization with Fairness Constraints

Abstract

Diversity maximization is a fundamental problem with wide applications in data summarization, web search, and recommender systems. Given a set XX of nn elements, it asks to select a subset SS of knk \ll n elements with maximum \emph{diversity}, as quantified by the dissimilarities among the elements in SS. In this paper, we focus on the diversity maximization problem with fairness constraints in the streaming setting. Specifically, we consider the max-min diversity objective, which selects a subset SS that maximizes the minimum distance (dissimilarity) between any pair of distinct elements within it. Assuming that the set XX is partitioned into mm disjoint groups by some sensitive attribute, e.g., sex or race, ensuring \emph{fairness} requires that the selected subset SS contains kik_i elements from each group i[1,m]i \in [1,m]. A streaming algorithm should process XX sequentially in one pass and return a subset with maximum \emph{diversity} while guaranteeing the fairness constraint. Although diversity maximization has been extensively studied, the only known algorithms that can work with the max-min diversity objective and fairness constraints are very inefficient for data streams. Since diversity maximization is NP-hard in general, we propose two approximation algorithms for fair diversity maximization in data streams, the first of which is 1ε4\frac{1-\varepsilon}{4}-approximate and specific for m=2m=2, where ε(0,1)\varepsilon \in (0,1), and the second of which achieves a 1ε3m+2\frac{1-\varepsilon}{3m+2}-approximation for an arbitrary mm. Experimental results on real-world and synthetic datasets show that both algorithms provide solutions of comparable quality to the state-of-the-art algorithms while running several orders of magnitude faster in the streaming setting.

View on arXiv
Comments on this paper