ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.02556
17
4

Privacy-Preserving Image Classification Using ConvMixer with Adaptive Permutation Matrix

4 August 2022
Zheng Qi
AprilPyone Maungmaung
Hitoshi Kiya
    PICV
ArXivPDFHTML
Abstract

In this paper, we propose a privacy-preserving image classification method using encrypted images under the use of the ConvMixer structure. Block-wise scrambled images, which are robust enough against various attacks, have been used for privacy-preserving image classification tasks, but the combined use of a classification network and an adaptation network is needed to reduce the influence of image encryption. However, images with a large size cannot be applied to the conventional method with an adaptation network because the adaptation network has so many parameters. Accordingly, we propose a novel method, which allows us not only to apply block-wise scrambled images to ConvMixer for both training and testing without the adaptation network, but also to provide a higher classification accuracy than conventional methods.

View on arXiv
Comments on this paper