14
5

Tailoring to the Tails: Risk Measures for Fine-Grained Tail Sensitivity

Abstract

Expected risk minimization (ERM) is at the core of many machine learning systems. This means that the risk inherent in a loss distribution is summarized using a single number - its average. In this paper, we propose a general approach to construct risk measures which exhibit a desired tail sensitivity and may replace the expectation operator in ERM. Our method relies on the specification of a reference distribution with a desired tail behaviour, which is in a one-to-one correspondence to a coherent upper probability. Any risk measure, which is compatible with this upper probability, displays a tail sensitivity which is finely tuned to the reference distribution. As a concrete example, we focus on divergence risk measures based on f-divergence ambiguity sets, which are a widespread tool used to foster distributional robustness of machine learning systems. For instance, we show how ambiguity sets based on the Kullback-Leibler divergence are intricately tied to the class of subexponential random variables. We elaborate the connection of divergence risk measures and rearrangement invariant Banach norms.

View on arXiv
Comments on this paper