ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.03694
25
10

Low-Latency Cooperative Spectrum Sensing via Truncated Vertical Federated Learning

7 August 2022
Zezhong Zhang
Guangxu Zhu
Shuguang Cui
    FedML
ArXivPDFHTML
Abstract

In recent years, the exponential increase in the demand of wireless data transmission rises the urgency for accurate spectrum sensing approaches to improve spectrum efficiency. The unreliability of conventional spectrum sensing methods by using measurements from a single secondary user (SU) has motivated research on cooperative spectrum sensing (CSS). In this work, we propose a vertical federated learning (VFL) framework to exploit the distributed features across multiple SUs without compromising data privacy. However, the repetitive training process in VFL faces the issue of high communication latency. To accelerate the training process, we propose a truncated vertical federated learning (T-VFL) algorithm, where the training latency is highly reduced by integrating the standard VFL algorithm with a channel-aware user scheduling policy. The convergence performance of T-VFL is provided via mathematical analysis and justified by simulation results. Moreover, to guarantee the convergence performance of the T-VFL algorithm, we conclude three design rules on the neural architectures used under the VFL framework, whose effectiveness is proved through simulations.

View on arXiv
Comments on this paper