ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.04361
8
1

Semi-Supervised Cross-Modal Salient Object Detection with U-Structure Networks

8 August 2022
Yunqing Bao
Hang Dai
Abdulmotaleb Elsaddik
ArXivPDFHTML
Abstract

Salient Object Detection (SOD) is a popular and important topic aimed at precise detection and segmentation of the interesting regions in the images. We integrate the linguistic information into the vision-based U-Structure networks designed for salient object detection tasks. The experiments are based on the newly created DUTS Cross Modal (DUTS-CM) dataset, which contains both visual and linguistic labels. We propose a new module called efficient Cross-Modal Self-Attention (eCMSA) to combine visual and linguistic features and improve the performance of the original U-structure networks. Meanwhile, to reduce the heavy burden of labeling, we employ a semi-supervised learning method by training an image caption model based on the DUTS-CM dataset, which can automatically label other datasets like DUT-OMRON and HKU-IS. The comprehensive experiments show that the performance of SOD can be improved with the natural language input and is competitive compared with other SOD methods.

View on arXiv
Comments on this paper