ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.07308
17
31

Pose Forecasting in Industrial Human-Robot Collaboration

24 July 2022
Alessio Sampieri
Guido DÁmely
Andrea Avogaro
Federico Cunico
Geri Skenderi
Francesco Setti
Marco Cristani
Fabio Galasso
ArXivPDFHTML
Abstract

Pushing back the frontiers of collaborative robots in industrial environments, we propose a new Separable-Sparse Graph Convolutional Network (SeS-GCN) for pose forecasting. For the first time, SeS-GCN bottlenecks the interaction of the spatial, temporal and channel-wise dimensions in GCNs, and it learns sparse adjacency matrices by a teacher-student framework. Compared to the state-of-the-art, it only uses 1.72% of the parameters and it is ~4 times faster, while still performing comparably in forecasting accuracy on Human3.6M at 1 second in the future, which enables cobots to be aware of human operators. As a second contribution, we present a new benchmark of Cobots and Humans in Industrial COllaboration (CHICO). CHICO includes multi-view videos, 3D poses and trajectories of 20 human operators and cobots, engaging in 7 realistic industrial actions. Additionally, it reports 226 genuine collisions, taking place during the human-cobot interaction. We test SeS-GCN on CHICO for two important perception tasks in robotics: human pose forecasting, where it reaches an average error of 85.3 mm (MPJPE) at 1 sec in the future with a run time of 2.3 msec, and collision detection, by comparing the forecasted human motion with the known cobot motion, obtaining an F1-score of 0.64.

View on arXiv
Comments on this paper