ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.08567
26
9

High Probability Bounds for Stochastic Subgradient Schemes with Heavy Tailed Noise

17 August 2022
D. A. Parletta
Andrea Paudice
Massimiliano Pontil
Saverio Salzo
ArXivPDFHTML
Abstract

In this work we study high probability bounds for stochastic subgradient methods under heavy tailed noise. In this setting the noise is only assumed to have finite variance as opposed to a sub-Gaussian distribution for which it is known that standard subgradient methods enjoys high probability bounds. We analyzed a clipped version of the projected stochastic subgradient method, where subgradient estimates are truncated whenever they have large norms. We show that this clipping strategy leads both to near optimal any-time and finite horizon bounds for many classical averaging schemes. Preliminary experiments are shown to support the validity of the method.

View on arXiv
Comments on this paper