ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.09520
15
1

Accelerating Vision Transformer Training via a Patch Sampling Schedule

19 August 2022
Bradley McDanel
C. Huynh
    ViT
ArXivPDFHTML
Abstract

We introduce the notion of a Patch Sampling Schedule (PSS), that varies the number of Vision Transformer (ViT) patches used per batch during training. Since all patches are not equally important for most vision objectives (e.g., classification), we argue that less important patches can be used in fewer training iterations, leading to shorter training time with minimal impact on performance. Additionally, we observe that training with a PSS makes a ViT more robust to a wider patch sampling range during inference. This allows for a fine-grained, dynamic trade-off between throughput and accuracy during inference. We evaluate using PSSs on ViTs for ImageNet both trained from scratch and pre-trained using a reconstruction loss function. For the pre-trained model, we achieve a 0.26% reduction in classification accuracy for a 31% reduction in training time (from 25 to 17 hours) compared to using all patches each iteration. Code, model checkpoints and logs are available at https://github.com/BradMcDanel/pss.

View on arXiv
Comments on this paper