ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.09601
11
5

Using Multi-Encoder Fusion Strategies to Improve Personalized Response Selection

20 August 2022
Souvik Das
Sougata Saha
R. Srihari
ArXivPDFHTML
Abstract

Personalized response selection systems are generally grounded on persona. However, there exists a co-relation between persona and empathy, which is not explored well in these systems. Also, faithfulness to the conversation context plunges when a contradictory or an off-topic response is selected. This paper attempts to address these issues by proposing a suite of fusion strategies that capture the interaction between persona, emotion, and entailment information of the utterances. Ablation studies on the Persona-Chat dataset show that incorporating emotion and entailment improves the accuracy of response selection. We combine our fusion strategies and concept-flow encoding to train a BERT-based model which outperforms the previous methods by margins larger than 2.3 % on original personas and 1.9 % on revised personas in terms of hits@1 (top-1 accuracy), achieving a new state-of-the-art performance on the Persona-Chat dataset.

View on arXiv
Comments on this paper