ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.09725
8
0

On Robustness in Nonconvex Optimization with Application to Defense Planning

20 August 2022
J. Royset
ArXivPDFHTML
Abstract

In the context of structured nonconvex optimization, we estimate the increase in minimum value for a decision that is robust to parameter perturbations as compared to the value of a nominal problem. The estimates rely on detailed expressions for subgradients and local Lipschitz moduli of min-value functions in nonconvex robust optimization and require only the solution of the nominal problem. The theoretical results are illustrated by examples from military operations research involving mixed-integer optimization models. Across 54 cases examined, the median error in estimating the increase in minimum value is 12%. Therefore, the derived expressions for subgradients and local Lipschitz moduli may accurately inform analysts about the possibility of obtaining cost-effective, parameter-robust decisions in nonconvex optimization.

View on arXiv
Comments on this paper