ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.09922
59
2
v1v2v3v4v5 (latest)

Efficient Concentration with Gaussian Approximation

21 August 2022
Morgane Austern
Lester W. Mackey
ArXiv (abs)PDFHTML
Abstract

Concentration inequalities for the sample mean, like those due to Bernstein and Hoeffding, are valid for any sample size but overly conservative, yielding confidence intervals that are unnecessarily wide. The central limit theorem (CLT) provides asymptotic confidence intervals with optimal width, but these are invalid for all sample sizes. To resolve this tension, we develop new computable concentration inequalities with asymptotically optimal size, finite-sample validity, and sub-Gaussian decay. These bounds enable the construction of efficient confidence intervals with correct coverage for any sample size. We derive our inequalities by tightly bounding the Hellinger distance, Stein discrepancy, and Wasserstein distance to a Gaussian, and, as a byproduct, we obtain the first explicit bounds for the Hellinger CLT.

View on arXiv
Comments on this paper