ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.10912
12
7

Learning Instrumental Variable from Data Fusion for Treatment Effect Estimation

23 August 2022
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Minqing Zhu
Yuxuan Liu
Bo Li
Furui Liu
Zhihua Wang
Fei Wu
    CML
ArXivPDFHTML
Abstract

The advent of the big data era brought new opportunities and challenges to draw treatment effect in data fusion, that is, a mixed dataset collected from multiple sources (each source with an independent treatment assignment mechanism). Due to possibly omitted source labels and unmeasured confounders, traditional methods cannot estimate individual treatment assignment probability and infer treatment effect effectively. Therefore, we propose to reconstruct the source label and model it as a Group Instrumental Variable (GIV) to implement IV-based Regression for treatment effect estimation. In this paper, we conceptualize this line of thought and develop a unified framework (Meta-EM) to (1) map the raw data into a representation space to construct Linear Mixed Models for the assigned treatment variable; (2) estimate the distribution differences and model the GIV for the different treatment assignment mechanisms; and (3) adopt an alternating training strategy to iteratively optimize the representations and the joint distribution to model GIV for IV regression. Empirical results demonstrate the advantages of our Meta-EM compared with state-of-the-art methods.

View on arXiv
Comments on this paper