ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11012
23
4

AniWho : A Quick and Accurate Way to Classify Anime Character Faces in Images

23 August 2022
Martinus Grady Naftali
Jason Sebastian Sulistyawan
Kelvin Julian
    3DH
    CVBM
ArXivPDFHTML
Abstract

In order to classify Japanese animation-style character faces, this paper attempts to delve further into the many models currently available, including InceptionV3, InceptionResNetV2, MobileNetV2, and EfficientNet, employing transfer learning. This paper demonstrates that EfficientNet-B7, which achieves a top-1 accuracy of 85.08%, has the highest accuracy rate. MobileNetV2, which achieves a less accurate result with a top-1 accuracy of 81.92%, benefits from a significantly faster inference time and fewer required parameters. However, from the experiment, MobileNet-V2 is prone to overfitting; EfficienNet-B0 fixed the overfitting issue but with a cost of a little slower in inference time than MobileNet-V2 but a little more accurate result, top-1 accuracy of 83.46%. This paper also uses a few-shot learning architecture called Prototypical Networks, which offers an adequate substitute for conventional transfer learning techniques.

View on arXiv
Comments on this paper