ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11276
23
2

Inferring Topology of Networked Dynamical Systems by Active Excitations

24 August 2022
Yushan Li
Jianping He
Cailian Chen
X. Guan
ArXivPDFHTML
Abstract

Topology inference for networked dynamical systems (NDSs) has received considerable attention in recent years. The majority of pioneering works have dealt with inferring the topology from abundant observations of NDSs, so as to approximate the real one asymptotically. Leveraging the characteristic that NDSs will react to various disturbances and the disturbance's influence will consistently spread, this paper focuses on inferring the topology by a few active excitations. The key challenge is to distinguish different influences of system noises and excitations from the exhibited state deviations, where the influences will decay with time and the exciatation cannot be arbitrarily large. To practice, we propose a one-shot excitation based inference method to infer hhh-hop neighbors of a node. The excitation conditions for accurate one-hop neighbor inference are first derived with probability guarantees. Then, we extend the results to hhh-hop neighbor inference and multiple excitations cases, providing the explicit relationships between the inference accuracy and excitation magnitude. Specifically, the excitation based inference method is not only suitable for scenarios where abundant observations are unavailable, but also can be leveraged as auxiliary means to improve the accuracy of existing methods. Simulations are conducted to verify the analytical results.

View on arXiv
Comments on this paper