ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11469
18
8

ProbGraph: High-Performance and High-Accuracy Graph Mining with Probabilistic Set Representations

24 August 2022
Maciej Besta
Cesare Miglioli
P. S. Labini
Jakub Tvetek
Patrick Iff
Raghavendra Kanakagiri
Saleh Ashkboos
Kacper Janda
Michal Podstawski
Grzegorz Kwa'sniewski
Niels Gleinig
Flavio Vella
O. Mutlu
Torsten Hoefler
ArXivPDFHTML
Abstract

Important graph mining problems such as Clustering are computationally demanding. To significantly accelerate these problems, we propose ProbGraph: a graph representation that enables simple and fast approximate parallel graph mining with strong theoretical guarantees on work, depth, and result accuracy. The key idea is to represent sets of vertices using probabilistic set representations such as Bloom filters. These representations are much faster to process than the original vertex sets thanks to vectorizability and small size. We use these representations as building blocks in important parallel graph mining algorithms such as Clique Counting or Clustering. When enhanced with ProbGraph, these algorithms significantly outperform tuned parallel exact baselines (up to nearly 50x on 32 cores) while ensuring accuracy of more than 90% for many input graph datasets. Our novel bounds and algorithms based on probabilistic set representations with desirable statistical properties are of separate interest for the data analytics community.

View on arXiv
Comments on this paper