ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11552
23
1

CheapET-3: Cost-Efficient Use of Remote DNN Models

24 August 2022
Michael Weiss
ArXivPDFHTML
Abstract

On complex problems, state of the art prediction accuracy of Deep Neural Networks (DNN) can be achieved using very large-scale models, consisting of billions of parameters. Such models can only be run on dedicated servers, typically provided by a 3rd party service, which leads to a substantial monetary cost for every prediction. We propose a new software architecture for client-side applications, where a small local DNN is used alongside a remote large-scale model, aiming to make easy predictions locally at negligible monetary cost, while still leveraging the benefits of a large model for challenging inputs. In a proof of concept we reduce prediction cost by up to 50% without negatively impacting system accuracy.

View on arXiv
Comments on this paper