ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.00130
14
19

Evaluating generative audio systems and their metrics

31 August 2022
Ashvala Vinay
Alexander Lerch
ArXivPDFHTML
Abstract

Recent years have seen considerable advances in audio synthesis with deep generative models. However, the state-of-the-art is very difficult to quantify; different studies often use different evaluation methodologies and different metrics when reporting results, making a direct comparison to other systems difficult if not impossible. Furthermore, the perceptual relevance and meaning of the reported metrics in most cases unknown, prohibiting any conclusive insights with respect to practical usability and audio quality. This paper presents a study that investigates state-of-the-art approaches side-by-side with (i) a set of previously proposed objective metrics for audio reconstruction, and with (ii) a listening study. The results indicate that currently used objective metrics are insufficient to describe the perceptual quality of current systems.

View on arXiv
Comments on this paper