ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.01328
34
9
v1v2 (latest)

Optimal empirical Bayes estimation for the Poisson model via minimum-distance methods

3 September 2022
Soham Jana
Yury Polyanskiy
Yihong Wu
ArXiv (abs)PDFHTML
Abstract

The Robbins estimator is the most iconic and widely used procedure in the empirical Bayes literature for the Poisson model. On one hand, this method has been recently shown to be minimax optimal in terms of the regret (excess risk over the Bayesian oracle that knows the true prior) for various nonparametric classes of priors. On the other hand, it has been long recognized in practice that Robbins estimator lacks the desired smoothness and monotonicity of Bayes estimators and can be easily derailed by those data points that were rarely observed before. Based on the minimum-distance distance method, we propose a suite of empirical Bayes estimators, including the classical nonparametric maximum likelihood, that outperform the Robbins method in a variety of synthetic and real data sets and retain its optimality in terms of minimax regret.

View on arXiv
Comments on this paper