ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02462
8
0

Rethinking The Memory Staleness Problem In Dynamics GNN

6 September 2022
Mor Ventura
Hadas Ben-Atya
Dekel Brav
ArXivPDFHTML
Abstract

The staleness problem is a well-known problem when working with dynamic data, due to the absence of events for a long time. Since the memory of the node is updated only when the node is involved in an event, its memory becomes stale. Usually, it refers to a lack of events such as a temporal deactivation of a social account. To overcome the memory staleness problem aggregate information from the nodes neighbors memory in addition to the nodes memory. Inspired by that, we design an updated embedding module that inserts the most similar node in addition to the nodes neighbors. Our method achieved similar results to the TGN, with a slight improvement. This could indicate a potential improvement after fine-tuning our hyper-parameters, especially the time threshold, and using a learnable similarity metric.

View on arXiv
Comments on this paper