ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02984
13
1

Semantic Interactive Learning for Text Classification: A Constructive Approach for Contextual Interactions

7 September 2022
Sebastian Kiefer
Mareike A Hoffmann
    VLM
ArXivPDFHTML
Abstract

Interactive Machine Learning (IML) shall enable intelligent systems to interactively learn from their end-users, and is quickly becoming more and more important. Although it puts the human in the loop, interactions are mostly performed via mutual explanations that miss contextual information. Furthermore, current model-agnostic IML strategies like CAIPI are limited to 'destructive' feedback, meaning they solely allow an expert to prevent a learner from using irrelevant features. In this work, we propose a novel interaction framework called Semantic Interactive Learning for the text domain. We frame the problem of incorporating constructive and contextual feedback into the learner as a task to find an architecture that (a) enables more semantic alignment between humans and machines and (b) at the same time helps to maintain statistical characteristics of the input domain when generating user-defined counterexamples based on meaningful corrections. Therefore, we introduce a technique called SemanticPush that is effective for translating conceptual corrections of humans to non-extrapolating training examples such that the learner's reasoning is pushed towards the desired behavior. In several experiments, we show that our method clearly outperforms CAIPI, a state of the art IML strategy, in terms of Predictive Performance as well as Local Explanation Quality in downstream multi-class classification tasks.

View on arXiv
Comments on this paper