ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.03759
11
2

Representation Learning for Appliance Recognition: A Comparison to Classical Machine Learning

26 August 2022
M. Kahl
Daniel Jorde
Hans-Arno Jacobsen
ArXivPDFHTML
Abstract

Non-intrusive load monitoring (NILM) aims at energy consumption and appliance state information retrieval from aggregated consumption measurements, with the help of signal processing and machine learning algorithms. Representation learning with deep neural networks is successfully applied to several related disciplines. The main advantage of representation learning lies in replacing an expert-driven, hand-crafted feature extraction with hierarchical learning from many representations in raw data format. In this paper, we show how the NILM processing-chain can be improved, reduced in complexity and alternatively designed with recent deep learning algorithms. On the basis of an event-based appliance recognition approach, we evaluate seven different classification models: a classical machine learning approach that is based on a hand-crafted feature extraction, three different deep neural network architectures for automated feature extraction on raw waveform data, as well as three baseline approaches for raw data processing. We evaluate all approaches on two large-scale energy consumption datasets with more than 50,000 events of 44 appliances. We show that with the use of deep learning, we are able to reach and surpass the performance of the state-of-the-art classical machine learning approach for appliance recognition with an F-Score of 0.75 and 0.86 compared to 0.69 and 0.87 of the classical approach.

View on arXiv
Comments on this paper