In high dimensional regression, where the number of covariates is of the order of the number of observations, ridge penalization is often used as a remedy against overfitting. Unfortunately, for correlated covariates such regularisation typically induces in generalized linear models not only shrinking of the estimated parameter vector, but also an unwanted \emph{rotation} relative to the true vector. We show analytically how this problem can be removed by using a generalization of ridge penalization, and we analyse the asymptotic properties of the corresponding estimators in the high dimensional regime, using the cavity method. Our results also provide a quantitative rationale for tuning the parameter that controlling the amount of shrinking. We compare our theoretical predictions with simulated data and find excellent agreement.
View on arXiv