ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07267
31
7

Compressed Particle-Based Federated Bayesian Learning and Unlearning

14 September 2022
J. Gong
Osvaldo Simeone
Joonhyuk Kang
    FedML
ArXivPDFHTML
Abstract

Conventional frequentist FL schemes are known to yield overconfident decisions. Bayesian FL addresses this issue by allowing agents to process and exchange uncertainty information encoded in distributions over the model parameters. However, this comes at the cost of a larger per-iteration communication overhead. This letter investigates whether Bayesian FL can still provide advantages in terms of calibration when constraining communication bandwidth. We present compressed particle-based Bayesian FL protocols for FL and federated "unlearning" that apply quantization and sparsification across multiple particles. The experimental results confirm that the benefits of Bayesian FL are robust to bandwidth constraints.

View on arXiv
Comments on this paper