ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07403
25
13

Private Stochastic Optimization With Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses

15 September 2022
Andrew Lowy
Meisam Razaviyayn
ArXivPDFHTML
Abstract

We study differentially private (DP) stochastic optimization (SO) with loss functions whose worst-case Lipschitz parameter over all data points may be extremely large. To date, the vast majority of work on DP SO assumes that the loss is uniformly Lipschitz continuous over data (i.e. stochastic gradients are uniformly bounded over all data points). While this assumption is convenient, it often leads to pessimistic excess risk bounds. In many practical problems, the worst-case (uniform) Lipschitz parameter of the loss over all data points may be extremely large due to outliers. In such cases, the error bounds for DP SO, which scale with the worst-case Lipschitz parameter of the loss, are vacuous. To address these limitations, this work provides near-optimal excess risk bounds that do not depend on the uniform Lipschitz parameter of the loss. Building on a recent line of work (Wang et al., 2020; Kamath et al., 2022), we assume that stochastic gradients have bounded kkk-th order moments for some k≥2k \geq 2k≥2. Compared with works on uniformly Lipschitz DP SO, our excess risk scales with the kkk-th moment bound instead of the uniform Lipschitz parameter of the loss, allowing for significantly faster rates in the presence of outliers and/or heavy-tailed data. For convex and strongly convex loss functions, we provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). In contrast to (Wang et al., 2020; Kamath et al., 2022), our bounds do not require the loss function to be differentiable/smooth. We also devise a linear-time algorithm for smooth losses that has excess risk that is tight in certain practical parameter regimes. Additionally, our work is the first to address non-convex non-uniformly Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some practical machine learning models. Our Proximal-PL algorithm has near-optimal excess risk.

View on arXiv
Comments on this paper