255

Rho-Tau Bregman Information and the Geometry of Annealing Paths

Information Geometry (IG), 2022
Abstract

Markov Chain Monte Carlo methods for sampling from complex distributions and estimating normalization constants often simulate samples from a sequence of intermediate distributions along an annealing path, which bridges between a tractable initial distribution and a target density of interest. Prior work has constructed annealing paths using quasi-arithmetic means, and interpreted the resulting intermediate densities as minimizing an expected divergence to the endpoints. We provide a comprehensive analysis of this 'centroid' property using Bregman divergences under a monotonic embedding of the density function, thereby associating common divergences such as Amari's and Renyi's α{\alpha}-divergences, (α,β){(\alpha,\beta)}-divergences, and the Jensen-Shannon divergence with intermediate densities along an annealing path. Our analysis highlights the interplay between parametric families, quasi-arithmetic means, and divergence functions using the rho-tau Bregman divergence framework of Zhang 2004;2013.

View on arXiv
Comments on this paper