ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.10053
30
0
v1v2v3v4v5 (latest)

Instance-dependent uniform tail bounds for empirical processes

21 September 2022
S. Bahmani
ArXiv (abs)PDFHTML
Abstract

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound has a main complexity component, a variant of Talagrand's γ\gammaγ functional for the deflated function class, as well as an instance-dependent deviation term, measured by an appropriately scaled version of a suitable norm. Both of these terms are expressed using certain coefficients formulated based on the relevant cumulant generating functions. We also provide more explicit approximations for the mentioned coefficients, when the function class lies in a given (exponential type) Orlicz space.

View on arXiv
Comments on this paper