ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12309
17
0

Feature Encodings for Gradient Boosting with Automunge

25 September 2022
Nicholas J. Teague
ArXivPDFHTML
Abstract

Automunge is a tabular preprocessing library that encodes dataframes for supervised learning. When selecting a default feature encoding strategy for gradient boosted learning, one may consider metrics of training duration and achieved predictive performance associated with the feature representations. Automunge offers a default of binarization for categoric features and z-score normalization for numeric. The presented study sought to validate those defaults by way of benchmarking on a series of diverse data sets by encoding variations with tuned gradient boosted learning. We found that on average our chosen defaults were top performers both from a tuning duration and a model performance standpoint. Another key finding was that one hot encoding did not perform in a manner consistent with suitability to serve as a categoric default in comparison to categoric binarization. We present here these and further benchmarks.

View on arXiv
Comments on this paper